Research update from down under

Dr Eugene Georgiades

Science and Risk (Animals and Aquatic) September 2018

Ministry for Primary Industries Manatū Ahu Matua

Biosecurity New Zealand

Tiakitanga Pūtaiao Aotearoa

Acknowledgements

Service providers

- NIWA Ltd
- ES Link Services Pty Ltd
- Cawthron Institute
- Biofouling Solutions Pty Ltd
- Ramboll New Zealand Ltd

Collaboration and in-kind support!

- Dept. of Fisheries Western Australia (Dr Justin McDonald)
- Australian Dept. of Agriculture and Water Resources (Sonia Gorgula; Peter Wilkinson)
- California State Lands Commission (Chris Scianni)
- Dept. Land and Natural Resources, Hawaii (Jules Kuo)
- USA project team (Mario Tamburri, Matt First, Greg Ruiz)

• MP

- MPI Operational Research Team!
- Facilities and Pathways Group,
- Response Group & Surveillance and Incursion Investigation Team
- Recovery and Pest Management Group
- Border and Biosecurity Policy Team

Moustaches on lips – *NOT* on ships!!!

Beards on faces *NOT* on boats!!!

Science advice: Testing in-water systems

Objectives

- Develop robust and repeatable testing procedures to evaluate the biosecurity risk of in-water cleaning systems
- External hull and niche areas (Morrisey et al. 2015) NIWA ES Link Services

MPI

MPI

- Literature review (Morrisey and Woods 2015)
- Internal seawater systems (Growcott et al. 2017)
 - Literature reviews (Growcott et al. 2016/2017)

Science advice: Testing in-water systems

- General testing
 - Vessel testing using the full system
 - Simulation of intended use
 - Evaluation conducted by:
 - Approved
 - Independent
 - Scientist
 - Report all test failures

Background Image: NIWA Ltd

Current research

In-water cleaning external hull - system testing

Treatment of internal pipework

of recreational vessels (MPI)

(USA research - MPI Technical Input)

In-water treatment of internal seawater systems – reviews (Aus Govt – MPI Technical Input) Fouling and disease (MPI)

In-water cleaning external hull - system testing

Testing in-water cleaning systems (external hull & niche areas)

Ramboll New Zealand Ltd MPI

 Suitably qualified and independent providers to test systems according to the science advice (Morrisey et al. 2015)*

Out of scope

• Aim

- Development of systems
- System developers testing their own systems
- Development of new testing procedures
- Testing of proactive systems (slime layer)

Testing in-water cleaning systems (external hull & niche areas)

Objectives

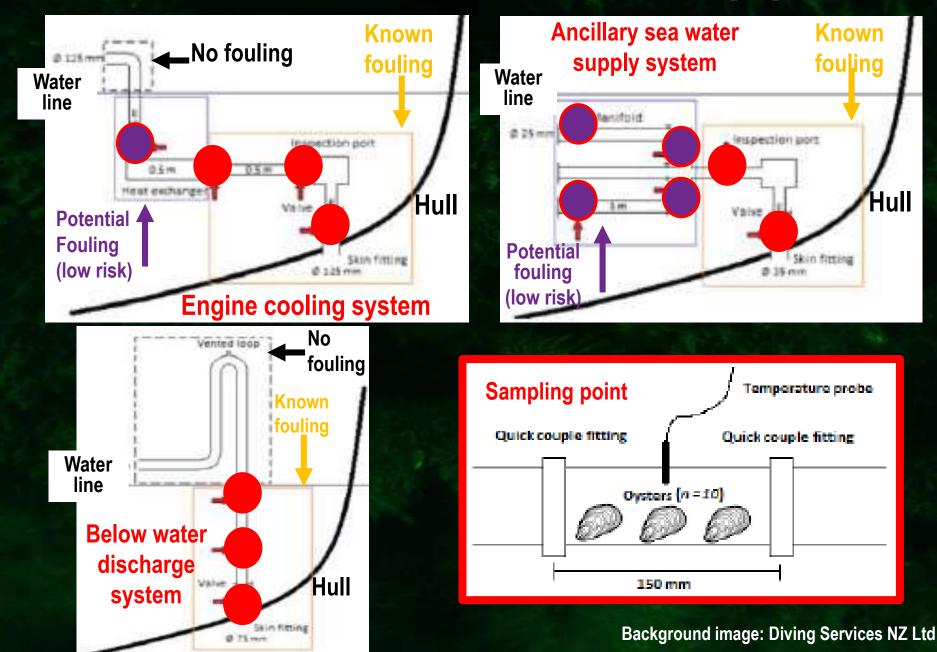
- Identify suitable systems (reactive)
 - large macro-fouled vessels
 - biocidal systems
- Independently test efficacy of systems
 - performance criteria and procedures
 - assess utility of advice (Morrisey et al. 2015)*
- Independently test and model potential for chemical contamination

Ramboll New Zealand Ltd MPI

Tales from the C.R.Y.P.T. Califont Recirculator for Yacht Pipework Treatment

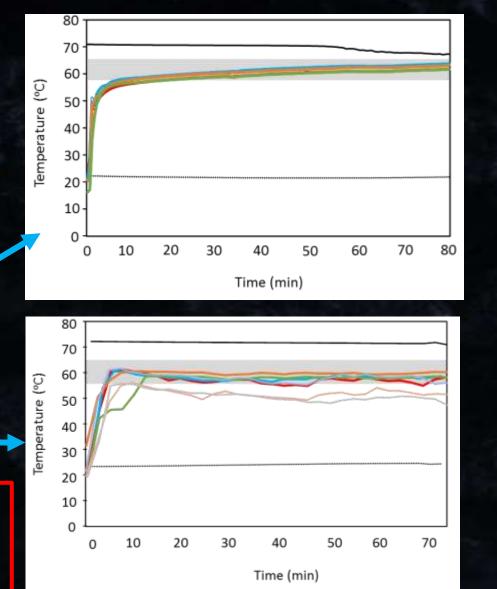
Niche areas

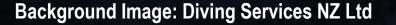
- Often overlooked
- Knowledge gap regarding treatment
- Research objectives
 - Identify suitable treatment
 - Validate treatment
 - Laboratory testing (mock pipework)
 - Vessel testing
 - Deliver protocol for treatment

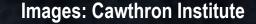

Cawthron Institute NIWA Ltd Biofouling Solutions Pty Ltd MPI

Background Image: Diving Services NZ Ltd

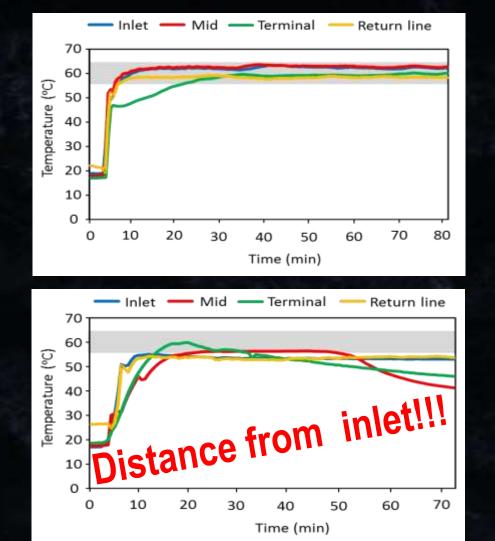
Treatment category	Treatment agent	Effective	Safe*	Biosecure	Consenting	Compatibile*	Feasibile	Quality control
Chemical treatment agents	Chlorine	?	✓	\checkmark	√	\checkmark	√	✓
	Chlorine dioxide	?	?	~	×	✓	×	×
	Bromine	?	✓	✓	×	✓	✓	\checkmark
	Hydrogen peroxide	?	✓	✓	×	\checkmark	×	✓
	Ferrate	?	✓	✓	×	✓	×	×
	Peracetic acid	?	✓	~	s	\checkmark	√	✓
	Acetic acid	?	✓	✓	✓	✓	✓	× -
	Descaler formulation – Rydlyme [®]	✓	?	~	×	✓	\checkmark	?
	Quaternary ammonium compounds	?	×	~	×	✓	~	?
Non-chemical treatment agents	Physical removal	×	✓	?	✓	✓	×	×
	Thermal stress	<	✓	\checkmark	✓	\checkmark	\checkmark	✓ -
	Deoxygenation	×	✓	✓	✓	✓	\checkmark	✓
	Osmotic shock	×	✓	✓	✓	\checkmark	\checkmark	\checkmark
 Chlorine More efficacy data requir 			Acetic acid			Heat 60 °C / 60 min		


Background Image: Diving Services NZ Ltd

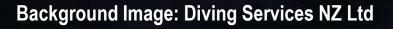


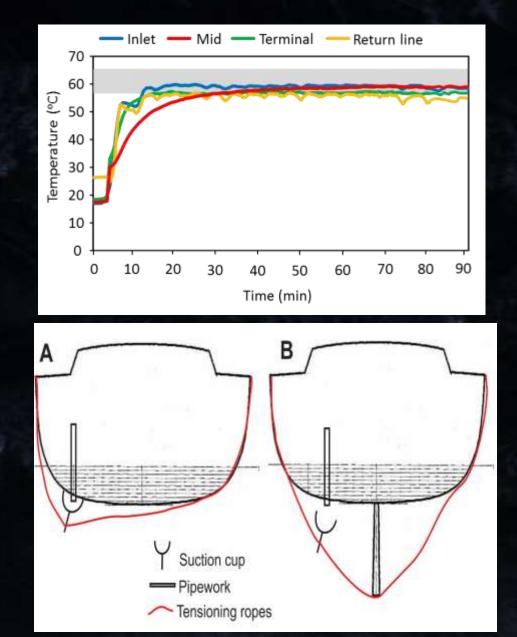

- Laboratory testing
 - Insertion to first bend
 - Cylinder at 72.5 °C
 - Flow rate at 20 L min⁻¹
 - No cooling step
 - Worked perfect for belowwater discharge system
 - Ancillary seawater system additional manual steps required, then worked

Final treatment 60 °C/ 60 min delivered 100 % mortality to oysters in high risk areas



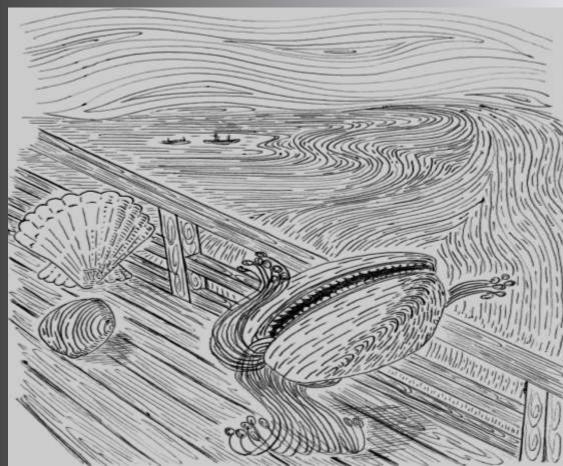
- Field testing
 - Vessel A
 - Length 23 m
 - Engine cooling system
 - Diameter: 50 125 mm
 - Length: 3 m
 - Vessel B
 - Length 7 m
 - Toilet water discharge system
 - Diameter: 12 mm
 - Length: 1.5 m




- Field testing
 - Vessel C
 - Length: 10 m
 - Below water discharge system
 - Diameter: 25 32 mm
 - Length: 2.5 m
 - Vessel D
 - Length: 15 m
 - Below water discharge system
 - Diameter: 50 mm
 - Length: 2 m

Background Image: Diving Services NZ Ltd

- Field testing
 - Vessel E
 - Length: 9 m
 - Ancillary seawater supply
 - Diameter: 25 mm
 - Length: 0.75 m
 - Vessel F
 - Length: 9 m
 - Ancillary seawater supply
 - Diameter: 15 mm
 - Length: 3 m


• The C.R.Y.P.T.:

- The Good
 - Effective within 2 h, where seal can be achieved
- The Bad
 - Instances where seal cannot be achieved
 - The smaller the pipework, the more difficult circulation is
 BUT
 - Engineering improvements can solve these problems
- The Ugly
 - Robust in-water treatment is challenging
 - Unless all water is removed prior to treatment, it is likely a recirculation system would have to be used for any treatment

Fouling and disease

- Biofouling implicated in the spread of molluscan pathogens
 - Bonamia ostreae, Ostreid Herpesvirus, Marteilioides chungmuensis
- Proof of concept
 - Identify pathogen in biofouling species
 - Molecular methods
 - Optimise
 - Validate
 - Demonstrate pathogen viability

We are all connected

Image: Halpern et al. 2008 *Science* 319 (5865): 948-952

Thank you!