MINUTE ITEM was approved as Minute Item No. 16 by the State Lands Commission by a 10te of 183 meeting. MINUTE ITEM 16 6/23/83 WP 5574 Louie/ Lipphardt/ Graber AMENDMENT TO LEASE 5574.1 GENERAL LEASE - INDUSTRIAL USE Calendar Item C16 was moved to the regular agenda. During consideration of Item 16, Mr. Norman LeRoy and Mr. Hilman Walker appeared on behalf of Chevron to answer any questions from Commissioners. Calendar Item 16 was approved as presented by a vote of 2-0. Attachment: Calendar Item C16. e alendar pat e MINUTE PAGE #### CALENDAR ITEM San C 1. 6. 6/23/83 WP 5574 Louie/ Lipphardt/ Graber AMENDMENT TO LEASE PRC 5574.1 GENERAL LEASE - INDUSTRIAL USE APPLICANT: Chevron U.S.A., Inc. 2120 Diamond Boulevard P. O. Box 8000 Concord, California 94524 AREA, TYPE LAND AND LOCATION: A 305[±] acre Marine Terminal, a 1.789 acre rock groin, a 34.976 acre beach fill, and a 69.931 acre dredge site, on tide and submerged land in the Pacífic Ocean at El Segundo, Los Angeles County. LAND USE: Marine petroleum terminal sites and construction and maintenance of a rock groin and beach fill for beach and pipeline protection. TERMS OF EXISTING LEASE: Initial period: 15 years from October 1, 1977. Renewal options: Three successive periods of ten years each. Surety bond: \$500,000. -1- A 50 S _7 # CALENDAR ITEM NO.C 1 8 (CONTD) Public liability insurance: Combined single limit coverage of \$10,000,000. Consideration: Annual rental shall be computed by multiplying each barrel of commodities by \$0.01 (one cent) until the minimum annual rental of \$270,504 is equaled; thereafter \$0.001 (one mil) per barrel for che next 75,000 barrels; and thereafter \$0.003 (three mil) per barrel for each additional barrel passing over the State's land in that same lease year. ## TERMS OF PROPOSED AMENDMENT: The amendment modifies the land description and area of Lease PRC 5574.1 to include a 1.7% -acre parcel for a rock grain, a 34.976-acre rarcel for beach fill and a 69.931-acre parcel for a dredge site for beach and pipeline protection. The lease provides that Lessee shall monitor the effects of the groin installation periodically for a period of five years. The data will be analyzed by a third party consultant and a report submitted to the State Lands Commission within 60 days of the survey. Choice of the third party consultant is subject to approval by the State. Determination of a direct cause-effect relationship between significant downcoast erosion and the groin shall be made by the State Lands Commission. Should a determination be made that the groin has caused significant downcoast erosion, Lessee agrees to finance remedial action. The form of remedial action is subject to prior approval of the State Lands Commission. The effective date of this amendment shall be upon the commencement of construction but no later than August 15, 1983. (Revised 6/22/83) 93 MALENSON 1 1154 # CALENDAR ITEM NO.C 18 (CONTD) The amendment is for a part of the El Segundo CONSIDERATION: marine terminal facility under Lease PRC 5574.1. Consideration for this project is reflected in the annual rental of that lease. BASIS FOR CONSIDERATION: Pursuant to 2 Cal. Adm. Code 2003. PREREQUISITE TERMS, FEES AND EXPENSES: Applicant is owner and permittee of upland. Processing costs have been received. STATUTORY AND OTHER REFERENCES: P.R.C.: Div. 6, Part 1 and 2; Div. 13. Α. Cal. Adm. Code: Ticle 2, Div. 3; Title 14, Div. 6. AB 884: 6/20/84. OTHER PERTINENT INFORMATION: - Chevron, U.S.A., Inc. maintains the El Segundo Marine Terminal under Lease PRC 5574.1. Chevron proposes to construct a groin to act as a land retaining barrier to maintain a wider beach zone in order to protect Chevron's onshore buildings and oil lines coring to shore from tanker terminals offshore. Recent storms have caused severe sand depletion in the area. The dredging portion of the project will remove sand from the Bay and place it on the adjacent beach. The project will also improve the beach area and nourish and protect a public bicycle trail which is located adjacent to the beach. - A Negative Declaration was prepared by Commission staff, pursuant to CEQA and the State CEQA Guidelines. Commission staff found that the project will not have a significant effect on the environment with implementation of mitigation measures as detailed in the Negative Declaration attached as Exhibit "C". -3-(Revised 6/22/83) # CALENDAR ITEM NOC 16 (CONTD) - 3. The project is situated on lands identified as possessing environmental values pursuant to P.R.C. 6370.1, and is classified in a use category "C" which authorizes Multiple Use. The project as proposed will not have a significant effect upon the identified environmental values. - 4. Los Angeles County Department of Beaches and Harbors has expressed a concern to Chevron and the State Lands Commission that no provision has been made for long-term operation of the proposed beach fill area. Chevron has agreed to negotiate an agreement with the County Department of Beaches and Harbors for operation and maintenance of the beach fill area. Until such time as an agreement has been reached with the County Chevron has agreed to retain full resp. sibility for the beach fill area. FURTHER APPROVALS REQUIRED: California Coastal Commission, Uni_ed States Army Corps of Engineers, and Water Quality Control Board. **EXHIBITS:** A. Land Description. B. Location Map. C. Negative Declaration. ## IT IS RECOMMENDED THAT THE COMMISSION: - 1. DETERMINE THAT A NEGATIVE DECLARATION HAS BEEN PREPARED FOR THIS PROJECT BY THE COMMISSION AFTER CONSULTATION WITH RESPONSIBLE AND TRUSTEE AGENCIES. - 2. CERTIFY THAT A NEGATIVE DECLARATION, (ND 336), HAS BEEN COMPLETED IN ACCORDANCE WITH CEQA, THE STATE CEQA GUIDELINES, AND THE COMMISSION'S ADMINISTRATIVE REGULATIONS; AND THAT THE COMMISSION HAS REVIEWED ND CONSIDERED THE INFORMATION CONTAINED THEREIN TOGETHER WITH COMMENTS RECEIVED DURING THE REVIEW PROCESS. - 3. DETERMINE THAT THE PROJECT WILL NOT HAVE A SIGNIFICANT EFFECT UPON THE ENVIRONMENT WITH IMPLEMENTATION OF THE MITIGATION MEASURES SET FORTH IN THE NEGATIVE DECLARATION, AND FIND THAT THE PROJECT IS CONSISTENT WITH ITS USE CLASSIFICATION. (Revised 6/22/83) # CALENDAR ITEM No.C 1 6 (GENTD) 4. AUTHORIZE ISSUANCE TO CHEVRON U.S.A., INC. OF AN AMENDMENT TO LEASE PRC 5574.1, SUBSTANTIALLY IN THE FORM ON FILE IN THE PRINCIPAL OFFICE OF THE STATE LANDS COMMISSION, WHICH MODIFIES SAID LEASE TO INCLUDE A ROCK GROIN, BEACH FILL, AND A DREDGE SITE, FOR BEACH AND PIPELINE PROTECTION AND AMLINDS THE LAND DESCRIPTION TO THAT DESCRIBED ON EXHIBIT "A" ATTACHED AND BY REFERENCE MADE A PART HEREOF. THE EFFECTIVE DATE OF THIS AMENDMENT SHALL BE UPON COMMENCEMENT OF CONSTRUCTION BUT NO LATER THAN AUGUST 1, 1983. ALL REMAINING TERMS AND CONDITIONS OF LEASE PRC 5574.1 REMAIN UNCHANGED AND IN FULL FORCE AND EFFECT. (Revised 6/22/83) CALENDAR PAGE 95.₁ 11.57 Three parcels of tide and submerged land in Santa Monica Bay near the City of El Segundo, Los Angeles County, California, described as follows: ## PARCEL 1 COMMENCING at Station 5 as shown on the map of the Ordinary High Water Mark filed for record August 19, 1964 as Miscellaneous Map No. 3319 in the Los Angeles County Recorder's Office, said Station 5 having coordinates of N = 4,080,123.54 and E = 4,158,824.08; thence N 23° 45' 14" W 64.00 feet; thence S 66° 14' 46" W 28.39 feet to the TRUE POINT OF BEGINNING; thence S 23° 16' 24" E 64.00 feet; thence S 59° 59' 53" W 900.10 feet to the beginning of a tangent curve concave northeasterly having a radius of 50.00 feet; thence southwesterly, northwesterly, and northeasterly, along said curve, through a central angle of 182° 18' 07", an arc distance of 159.09 feet; thence tangent to said curve N 62° 18' 00" E 906.32 feet to the point of beginning. #### PARCEL 2 BEGINNING at Station 5 described in Parcel 1 above, thence S 23° 45' 14" E 415.00 feet along the boundary line established by the agreement shown in Document No. 3319, File No. F 1564, recorded August 10, 1964 in the Los Angeles County Recorder's Office; thence leaving said boundary N 75° 40' 34" W 594.91 feet to a point on the southeasterly line of Parcel 1 above; thence along said Parcel 1 N 59° 59' 53" E 442.00 feet; thence N 23° 16' 24" W 64.00 feet; thence S 62° 18' 00" W 680.00 feet; thence leaving said Parcel 1 N 17° 50' 40" W 2339.44 feet to a point on the El Segundo groin; thence along said groin N 66° 00' 00" E 517.98 feet, more or less, to a point on the ordinary high water mark; thence along the ordinary high water mark S 24° C0' 00" E 361.25 feet; thence S 22° 45' 00" E 47.87 feet; thence S 28° 30' 40" E 184.36 feet; thence S 20° 42' 10" E 1278.56 feet; thence S 23° 45' 13" E 476.86 feet to the point of beginning. #### PARCEL 3 BEGINNING at a point from which Station 5 described in Parcel 1 above bears S 74° 58' 30" E 1992.19 feet; thence S 72° 15' 19" W 524.98 feet; thence N 84° 29' 19" W 2290.59 feet; thence N 1° 03' 48" W 1077.72 feet; thence N 89° 56' 19" E 2300.00 feet; thence S 23° 40' 56" $\stackrel{\cdot}{\epsilon}$ 1244.83 feet to the point of beginning. This description is based on the California Coordinate System, Zone 7. END OF DESCRIPTION REVIEWED JUNE 6, 1983 BY BOUNDARY AND TITLE UNIT, LEROY WEED, SUPERVISOR. Revised 7/1/83 ## STATE LANDS COMMISSION ISTH STREET RAMENTO, CALIFORNIA 95814 /X/ Draft NEGATIVE DECLARATION Final EIR ND 336 File Ref.: WP 5574 SCH#: 83031717 Project Title: Chevron El Segundo Groin and County Outfall Extension Project Location: Pacific Ocean, El Segundo, Los Angeles County. Project: Description: Construction of a 900-foot long groin to protect against damaging crosion to Chevron's El Segundo Refinery Marine Terminal. Project includes extension of the Los Angeles County Grand Avenue storm drain. *NOTE: Should additional copies of the Initial Study be required, please contact the designated person below. This NEGATIVE DECLARATION is prepared pursuant to the requirements of the California Environmental
Quality Act (Section 21000 et seq of the Public Resources Code), the State EIR Guidelines (Section 15000 et seq, Title 14, of the California Administrative Code), and the State Lands Commission regulations (Section 2901 et seq, Title 2, of the California Administrative Code). Based upon the attached Initial Studies, it has been found that: the project will not have a significant effect on the environment. the attached mitigation measures will avoid potentially significant effects. Contact Person: Ted T. Fukushima State Lands Commission 1807 - 13th Street Sacramente, California 95814 relephone: (916) 322-7813 WP-5574 SCH No. 83031717 ### **MITIGATION *** # Discussion Items: - 1. Continuation of Longshore Transport - a. Long-term Effects - b. Short-term Effects - 2. Alternative Methods of Protection - a. Selection Criteria - b. Alternative Methods Considered - 3. Monitoring Program - 4. Sediment Compatability - 5. Borrow Site - a. Modification of Wave Energy - b. Effect on Longshore Transport - · 6. Turbidity Effects on Plant Operations - 7. Abandonment of the Groin - 8. Liability and Maintenance - 9. Parking and Other Beach Services - 10. Benthic Organisms - * Prepared in response to comments on the "Initial Study, El Segundo Marine Terminal (ESMT) Protection Project, El Segundo Refinery, For Chevron U.S.A., Inc.", by Dames and Moore, March 1, 1983. # Continuation of Longshore Transport The question has been raised of the projects long-term and short-term effects on longshore transport or littoral sand supply. Interruption of the longshore transport could result in erosion of downcoast beaches. This question was considered in section 3.3 of the Initial Study and is expanded upon here. # a. Long-term Effects The proposed protection method has been compared to the Topaz Street groin in Redondo Beach, which has had no adverse impact on surrounding beaches. Dr. Bernard Pipkin has documented this comparison in the letter found in the Appendix to this report. Dr. Pipkin cites several studies of the Topaz Street groin that demonstrate that sand is passing through and around that groin. He then states that: "The proposed structure at El Segundo is very similar to the Topaz Street groin with the exception of the location of fill lacement. The El Segundo structure is 900 feet long compared to 700 fee for Topaz Street; toe depth in both cases is about 20 feet; and design wave height in both cases is very conservative. The difference is that the half-million yards of fill to be placed north of the El Segundo groin will provide an instant stockpile of sand for beaches to the south. Once the fill reaches equilibrium with the dominant wave period and direction, sand should bypass the end of the groin and filter through it to nourish downcoast beaches. There is abundant literature to support this contention and I have taken the liberty to append a bibliography of field and laboratory research on the subject." (see Appendix). # b. Short-term Supply The short-term erosion concern is in regard to how the groin and beach fill will react under severe winter storm conditions. Storm waves would attack the stable bypassing fill (longshore transport) and deposit a significant amount of material offshore to depths where longshore transport is significantly lower. It has been suggested that down coast erosion will occur until enough material has been impounded from both on-off shore transport and longshore transport to reestablish stable bypassing. The seaward toe of the grein will be at a -20 ft MLLW elevation, and thus very little material will be drawn offshore beyond the impounding capability of the groin. A large portion of material will be deposited within the active littoral transport zone (-3 to -15 ft MLLW) and will overfill the stable bypassing profile. Thus, material will be able to be transported through the permeable portion of the groin immediately after such severe storms. A portion of the beach fill will need to be replaced by natural forces to fill the impound area to the design bypassing profile. This area will probably be located from +6 to -3 ft MLLW. This is the most active zone for longshore transport under normal post storm wave conditions. 100 minut PLAN 1162 The total refilling of the groin is expected to occur over time periods measured in weeks. During this refilling period, sand will continue to be transported through the groin along the overfilled section of the offshore storm-deposited sand repository. Starvation of down coast beaches will be mitigated by the placement of 75,000 cubic yards of beach material directly down coast of the groin. This volume represents nearly 50 percent of the total estimated net annual littoral movement in this area. Thus, total starvation of the down coast beaches would have to occur for a long period of time (6 months) before any significant deficit of littoral material would be experienced. #### Alternative Methods of Protection 2. Additional information has been requested to determine the environmental and feasibility aspects of alternative methods of protecting Chevron's beach frontage and pipelines. Also, the proposed location of the 900 foot (ft) groin is being questioned, Chevron studied numerous alternative means of dealing with the continued erosion at El Segundo for approximately two years prior to preparation of the "Initial Study". No designs or maintenance schemes were considered which were expected to adversely effect local sand supply. The beach fill aspect of the proposed 900 ft groin, as well as its semi-permeable design, substantiated initial consideration of this ultimate choice. #### Selection Criteria: a. As mentioned above, no solutions were considered which might adversely affect local sand supply. Therefore, one must look to other environmental and feasibility criteria in making the selection of the best method for dealing with this ongoing erosion problem. The following feasibility criteria were used by Chevron in deciding on the best solution: long-term protection of the El Segundo Marine Terminal (ESMT) and submarine pipelines. proven engineering design, O availability of an ongoing sand supply, 0 cost of the solution, 0 obtaining government permits for the project in all its phases. In addition, the following environmental selection criteria are offered as the primary considerations in this matter: impact on local aesthetics, 0 - impact on local recreational resources, 0 - impact on benthic organisms. | TOALEMOLY FACE | 101 | |----------------|------| | e name or Le | 1163 | #### b. Alternative Methods Considered: Table 1 (attached) is an amended version of Table 1 of the Initial Study. It summarizes the nine alternative methods considered by Chevron to address protection of its beach frontage. Four general types of solutions were considered: - construction of one or more rock groins, some of which would be accompanied by a long-term sand nourishment program (Alternatives No. 1, 3, 4×5 of Table 1), - o implementation of a long-term sand nourishment program (Alternative No. 2 of Table 1), - o construction of a surfing or underwater recf (Alternative No. 6 and 7 of Table 1), - o construction of seawalls accompanied by various means of also protecting the submarine pipelines (Alternative No. 8 and 9 of Table 1). Following is a discussion of each of the specific alternatives considered within each of the above general classes, and how they were evaluated with respect to the feasibility and environmental criteria. #### (1) Rock Groins: Alternative 1 - 900 ft rock groin with 500,000 cubic yards beach fill: The chosen protection method satisfies all of the fessibility criteria mentioned previously. It provides a long-term solution to Chevron's problem of protecting both its onshore facilities and its submarine pipelines. It is a proven engineering design (see Dr. Pipkin's report, Appendix). It does not depend on the availability of a long-term source of compatible sand re-nourishment. It will cost \$5,600,000, which is the least costly (\$5,600,000) of the nine alternatives. Finally, it required obtaining government permits only once, and not every four years, as in some of the cases which follow. Regarding the chosen alternative's environmental impact, it will have some aesthetic impact since the rock groin will be visible to people using the beach and near shore areas for recreation (see section 3.17.2, Page 79 of "Initial Study"). It will contribute to local recreation resources by expanding the sandy beach area available for sun bathers. It also will protect the bike path (if re-built), and may improve surfing conditions. Finally, it will have some impact on benthic organisms, but it will be only a one-time impact. This is because the beach fill material will only have to be dredged once, with no ongoing sand neurishment requirements. It should be noted, however, that Dr. Pipkin states that a minimal sand nourishment program may be required on a ten year cycle. (see Appendix). Alternation 3 - Two 750 ft groins with 350,0% cubic yards beach fill: This alternative was considered less feasible than the 900 ft groin with beach fill because it did not offer a permanent solution. This was because the 750 ft groins would terminate shoreward of the seaward boundary of the littoral drift zone. Thus, sand would continue to be removed from the filled beach by the longshore transport phenomenon, thereby requiring periodic sand nourishment to keep pipelines adequately protected. As discussed in the sediment compatibility study done by Dames and Moore and submitted to the U.S. Army Corps of Engineers as part of their permit application, there appears to be a limited supply offshore El Segundo of compatible sar from material. As shown in Figure 1, twenty-three (23) vibracores from two gather the data for this study. These vibracores were taken from two general areas offshore Chevron's beach frontage. One of the two areas (vibracore #5 - 11) contained sand
that preliminary analysis indicated was unacceptable as beach fill. The other site is the proposed borrow site for the 900 ft. groin beachfill. If the borrow material had to be imported from a distant source, it would greatly increase the cost. The cost of this solution was originally understated in the Initial Study at \$4,900,000, as there was an error in the groin constructin cost. Also, it does not include the cost of locating and dredging sandfill on a regular basis. The frequency of required dredging is difficult to predict, but may be as often as every four years, which would add approximately \$2,500,000 to the cost. In particularly stormy winters, it could be every year for a few years. This would mean the application for and acquisition of necessary government permits for the dredging operation on a frequent basis. Including the cost for periodic re-nourishment, the total cost for this option is estimated at \$6,500,000... Regarding this alternatives environmental impact, two 750 ft groins would present a greate, aesthetic impact than a single 900 ft groin. It would involve 600 linear feet of additional rock structure (750 ft + 750 ft less 900 ft = 600 ft additional). Like the 900 ft groin, it would provide a wider beach and protect the bike path (if rebuilt). Unlike the 900 ft groin, it would involve a continued impact on marine benthic organisms due to the frequent dredge and fill operation. Alternative 4 - One - 750 ft groin with beachfill and periodic nourishment: This alternative was considered less feasible than the 900 ft groin occause it also did not offer a permanent solution. This is because, as with the two 750 ft groins, the toe of the groin would be inside the littoral drift zone. Thus, sand would continue to be removed from the filled beach by the longshore transport system, requiring periodic sand re-nourishment to keep the pipelines covered. Since a nearby sand borrow source is not known for the large volumes of sand that would be needed every few years, this alternative is unreliable. Also, government permits would have to be acquired on a frequent basis for the credging and fill operations. The total present worth cost for this option is estimated at \$5,100,000. This alternative's environmental impact is approximately the same as that of the 900 ft groin; it would have a slightly diminished aesthetic impact, since it would be 150 feet shorter. It would provide a wider beach than presently exists, and protect the bikepath (if rebuilt). Unlike the 900 ft. groin, it would continue to disturb marine benthic organisms during each dredge and fill operation. Alternative 5 - One - 750 ft groin with beach fill and lowering of No. 3 Submarine Berth lines: This alternative was considered less feasible than the 900 ft groin because it also did not offer a permanent solution. As with the other two solutions involving 750 ft groins, the toe of the groin would be inside the littoral drift zone. Thus, sand would continue to be removed from the filled beach by the longshore transport system. This would necessitate a program of periodic nourishment to keep the mid-beach lines protected and covered. The Initial Study did not consider this additional cost of \$3,200,000. Including the cost for periodic re-nourishment, the total present worth cost for this option is estimated at \$7,900.000. This alternative's environmental impact is approximately the same as that of the 900 ft groin with only a slightly diminished aesthetic impact since it would be 150 ft shorter. # 2; Sand Nourishment Program: Shown as alternative No. 2 of Table 1, this alternative was again considered less feasible than the 900 ft groin because it does not offer a permanent solution to Chevron's erosion problem. It would require dredging and beach fill on a frequency that is impossible to predict, since it depends on the vagaries of the weather. Chevron has estimated that about every four years nourishment with 150,000 cubic yards of fill would be required. However, this could be increased to every one or two years due to severe winter storms similar to those experienced in January through March, 1983. Since the source of sand for such frequent beach fill efforts is unpredictable (see Appendix), and since government permits would be required for each such effort, this solution was also felt to be unreliable. The total present worth cost for this option is \$6,000,000. The environmental impact of a regular nourishment program would include the visual aesthetic impact of frequent dredging operations. It would contribute to local recreational resources by widening the beach and protecting the bikepath (if rebuilt). Finally, it would disturb the marine benthic organisms more than under the 900 ft groin alternative, due to the impact of the frequent dredge and fill operation. | 104 | 1166 # (3) Surfing or Underwater Recfs: Shown as alternatives No. 6 and 7 of Table 1, these two alternatives were considered infeasible since they represent solutions that are not proven engineering design in the water depths required for this project. In addition, they were considerably more expensive than thee 900 ft groin. They would cost \$8,200,000 and \$8,500,000, respectively. Also, they would restrict access to Chevron's submarine pipelines since the underwater reefs would be located on top of selected lines. The environmental impacts of these alternatives were not examined closely, since it was an unproven engineering design. ### (4) Seawalls: Shown as alternatives No. 8 and 9 of Table 1, these two alternatives were considered infeasible since they do not solve the erosion problem as it affects Chevron's pipelines. Option No 8, involving the use of concrete filled bags to protect the submarine lines, is only a short term (20 year) solution to the problem of exposure of these lines. In addition, Chevron's recent experience in protecting their pipelines from the March 1983 storms has led them to question the physical feasibility of placing these bags around their lines. Option No. 9, involving lowering of the four berths' pipelines would cost \$13,000,000 in present worth dollars. As mentioned previously, the question was also raised as to the possible location of the 900 ft groin at the southern perimeter of the beach frontage owned by Southern California Edison. Chevron has had several conversations over the last several years with Edison representatives regarding their mutual shorefront problems. At this point in time, Edison does not want to participate with Chevron on the proposed project. Edison has constructed a rock seawall that they believe will provide adequate protection to their facilities. Chevron's shore protection problems are different from Edison's. In addition to protecting shore facilities, Chevron must protect pipelines that extend from the beach to four offshore berths. The 900 ft. groin provides the means of controlling or maintaining the sand cover over the pipelines. Edison's problem involves protection only of their onshore facilities. A coordinated project with Edison considering a single groin and beach fill would have significant cost and aesthetic impacts. In order to provide the required seaward coverage of Chevron's pipelines, the groin would need to be lengthened to a total length of approximately 1,400 ft, if placed at the southern boundary of Edison's property. Additional dredge borrow source material would need to be defined and the total volume required for beach fill could easily more than double the present estimate of 500,000 to 750,000 cubic yards. Thus, as much as 1,500,000 cubic yards of compatible fill material would have to be located, dredged and placed on approximately 3/4 mile of shorefront. Such a structure, even if desired by Edison, would be placed closer to a nigh density peach use area (Manhattan Beach). # 3. Monitoring Program Chevron's primary design criteria has always been to avoid erosion on down coast beaches. Design alternatives which ignored this consideration were disregarded. Chevron's analysis of the design and sand pre-fill characteristics has been substantiated by third party experts in the field: Mr. John Hale, the designer of the proposed project, and Dr. Bernard Pipkin (See Appendix). Los Angeles County survey data documents the gradual erosion of all South Bay beaches at differing rates depending on wave patterns and artificial replenishment projects. All experts can agree that beach erosion will continue independent of the proposed groin project. However, it is important that the groin design does not cause incremental erosion. Regardless of the groin construction, beach erosion will continue on the South Bay beaches. Chevron has developed a monitoring program which addresses down coast erosion and will detect any increase caused by the Chevron groin. The program is based on a survey of twelve (12) beach profiles from Playa Del Rey to Hermosa Beach (See Figure 2). These surveys will be taken semi-annually the years before and after construction and annually in August thereafter. This data will be analyzed by a third party consultant and a report prepared annually for at least five years. The analysis will consist of a determination of sand volume changes from year to year at depths from 0'MLLW to -25' MLLW. Changes will be compared between above groin profiles and below groin profiles. In the unlikely event that the consultant determines that a direct cause-effect relationship does exist between the presence of Chevron's groin and downcoast crosion, Chevron will take remedial action. Such action would have to be determined at the time, but could include beach nourishment, breach of a portion of the groin, a sand bypass system or repair of erosion-damaged property. The percentage of erosion attributed to the groin would establish the percent financed by Chevron. Chevron believes the design is sound, and that the annual analysis will substantiate this. # 4. Sediment Compatibility
The question was raised of the compatibility of the borrow source material for the beachfil site. As mentioned previously, Dames and Moore made a sand compatibility study based on a program of 24 offshore core samples in December 1982 and January 1983. This report was submitted to the U.S. Army Corps of Engineers (COE) in March 1983. Following is a summary of the results of this report. The results of grain size analyses indicate dominant constituents of oifshore sediments were fine to medium sands. Coarser gravel material and shell fragments were noted in several core sections. These coarser materials were usually present in a matrix of medium to fine sands. Silts and clays averaged only a few percent in most samples analyzed. Two samples contained silts and clays in excess of 20 percent. These samples accounted for less than one 1 foot (ft) from a total of approximately 140 ft of recevered core length. Surface sediments were usually darker in color and finer than subsurface sediments. Figure 1 presents a drawing of an outline of the proposed borrow area with north-south and east-west cross-sections. This outlined surface area represents approximately 284,000 square yards. Sixteen vibracores between 3½ and 11 ft in length were obtained from this area. This number is in excess of the 11 vibracores required by the following formula presented in the COE guidelines: $$N = \frac{\sqrt{A}}{50}$$ (where N is the required maximum number of vibracores and A is the surface area of proposed dredging in square yards.) Based on results of grain size analyses from samples collected along beach profiles 1 and 2, grain size envelopes were developed (Figures 3 and 4). Results of the grain size analyses performed on channel samples removed from vibracores VC-1 through VC-4 and VC-12 through VC-23 were used to develop a composite grain size curve. Each sample interval from cores VC-1 through VC-4 and VC-12 through VC-23 was weighted according to its length in relation to the total length of recovered core. For each size class, the composite was calculated by the summation of percent by weight multiplied by the footage of each interval divided by the total footage sampled for all locations. Figure 5 shows the composite grain size curve for vibracores VC-1 through VC-4 and VC-12 through VC-23. Figures 6 and 7 show this composite grain size curve in relation to the grain size envelopes developed for beach profiles 1 and 2. Although these figures show that some of the material within the proposed borrow area is coarser than that found along the receiving beach, this is not in violation of COE guidelines. The coarser componenets of sediments in the proposed borrow area are less than 60 millimeters in diameter and are not expected to present any adverse aesthetic impacts along the receiving beach. Figures 6 and 7 clearly suggest that sediment contained within the proposed borrow area is compatible with sediments on the receiving beach according to COE guidelines. #### 5. Borrow Site #### a. Modification of Wave Energy: The questions have been raised as to what modification to wave energy will be caused by the resulting dredge depression and what will the resulting wave height be (on average) in comparison to pre-project wave height. The total incident wave energy within the project area will remain unchanged compared to pre-construction conditions. However, as discussed in Section 3.4 of the Initial Study and shown schematically on Figure 19 of the Initial Study, there will be a redistribution of wave energy within the project area. Some areas will experience an increase in incident wave height and other areas will experience a decrease in incident wave height. These locations will change depending on direction and period of incident waves. A typical wave condition for this area (based on Table 6 in the Initial Study) would have a height of 1-3 ft and a wave period of 12-16 seconds. The dominant approach direction is from the west. Refraction effects over the dredge borrow depression could potentially result in local wave height increases under these specific conditions of less than 25 percent (increase increases under these specific conditions of loss than 25 ft should be noted average wave height range from 1-3 ft to 1.25-3.75 ft; - it should be noted average wave height range from 1-3 ft to 1.25-3.75 ft; - it should be noted that Figure 19 is a schematic representation only and ultimate refraction effects are dependent on final dredge depression bottom contours. However, the effects will be local (length scale on order of 500 ft) and are expected to result in changes (increases and decreases) of less than 25 percent for typical conditions. # b. Effect on Longshore Transport: Concern has been expressed that the dredge borrow site is located too close to shore and will fill in with material drawn offshore from the beach fill. This would cause a deficit in sand carried in the longshore transport system, which would potentially result in increased down coast erosion. In support of this concern Los Angeles County Engineer - Facilities Department prepared several profiles depicting the Redondo-Malaga Cove dredge depression, the proposed El Segundo dredge depression and pre and post 1983 storm profiles near Venice beach (see Figure 8). In preparing the Figure, the County states that the Initial Study presents conflicing data on the inshore limit of the proposed dredge source. Since this data was used to formulate their conclusions, the following paragraph is presented to clarify the data. The County's report refers to Page 64 of the Initial Study which indicates -25 ft MLLW at 1250 feet, while Figure 19 (from Initial Study) indicates -30 MLLW. The inshore limit of the proposed dredge cut is defined as -25 ft. MLLW. The length of the beach parallel dredge cut (north to south) is approximately 1,250 ft. This is not the distance from the shoreline (which presently is approximately 1,500 ft from the shoreline to the inshore limit of the dredge cut). The County selected Figure 19 from the Initial Study, to base their profiles of the proposed El Segundo dredge cut. Since this is a schematic drawing, scaling data from this figure is inappropriate. Chevron has have revised the County's Figure II (see Figure 8 of this report) to reflect a correct representation of the proposed dredge cut profile. As shown on Figure II, a considerable amount of material has been drawn offshore Venice beach as a result of the 1982/1983 winter storms. The seaward limit of this storm includes offshore movement of material is shown in Figure 8 to be approximately -22 ft MLLW and only a small fraction (5 percent) of the total volume is seaward of -20 ft MLLW. Since the dredge cut will be seaward of -25 ft MLLW, there is little chance that any significant offshore transport of material will be drawn into the dredge depression by storm events and not returned to the active littoral zone. The profiles presented by the County for Venice beach are typical of profiles we have examined in Santa Monica Bay that all indicate the seaward limit of active on-offshore littoral movement is in the range of -17 to -22 ft MLLW. The shoreward limit of dredge cut was selected after examination of historical beach profiles, wave data and operational limits of available dredging equipment. Calculations using recently developed analytical techniques have been made to determine the seaward limit of significant sand transport. Using the methods presented in Hallermeier (1983*), Chevron calculates an annual depth limit to significant sand transport of 20.1 ft. Hallermeier (1983) presents an estimate of 19.0 ft. for this same annual limit for Venice and Santa Monica. These results also support selection of -25 ft. MLLW for the shoreward unit of dredge cut to be in deep enough water to preclude significant volumes of sand being "trapped" in the dredge depression. The Redondo to Malaga Cove dredge and sand nourishment project was examined in order to provide an indication of the behavior of a dredge depression with similar characteristics of sand grain sizes, wave exposure and depth of nearshore limit of dredge cut. We understand the uncertainties in making a direct comparison between such projects and therefore included a detailed examination of profiles to establish a historical limit of on-of shore transport within Sanţa Monica Bay. Both approaches have provided confirmation of the selection of -25 ft MLLW as an acceptable shoreward limit for dredging. # 6. Turbidity Effects on Power Plant Operations The issue has been raised regarding increased turbidity in local coastal waters caused by dredging and beach fill operations. Similar levels of turbidity are created by severe storm activity in local coastal waters. Such storm activity does not normally cause problems for the cooling water systems of these two facilities. This temporary degradation of water quality may effect the operation of the two power stations adjacent to Chevron: Southern California Edison's El Segundo Concrating Station and Los Angeles Department of Water and Power's Scattergood Station. Chevron advised both of these facilities regarding this possible impact, and they responded that they anticipated no adverse effects on their respective cooling water intake systems. # 7. Abandonment of the Groin Further clarification of Section 3.18 of the Initial Study was requested with respect to abandonment of the groin after its useful life. Although Chevron cannot anticipate a time when they would not need the proposed beach protection project, if unforeseeable events should occur, the groin would have to be abandoned. It would be modified at that time so as to permit uninterrupted longshore transport and also to minimize the "attractive hazard" aspect of the remaining rock structure. Such measures might include removal of some of the shoreward portions of the groin. If necessary, the entire structure could be totally removed, but
this seems unlikely to be required to accomplish the joint goals of continuation of the littoral process and diminution of the groin as an "attractive hazard". ^{*} Hauermeier, R. J., 1983, Sand Transport Limits In Coastal Structure Designs, Proceedings of Coastal Structures 1983, American Society of Civil Engineers. # 8. Liability and Maintenance It was pointed out that the groin will constitute an "attractive hazard" if there is access to the structure by the public, and that muntenance and liability responsibilities should be clearly specified. Chevron is constructing a privatelyowned structure specifically to protect their own private property being threatened by ocean erosion. As such, it is in Chevron's interest and is their intent to maintain the groin so that it continues to performs its intended function. To minimize the "attractive hazard" aspects of the structure, a 6-foot high chain link fence will be constructed approximately mid-way in the length of the groin to minimize the possibility of access to parts of the groin adjacent to and in contact with the sea. In addition, a guard rail and chain will be located at the shoreward end of the groin to prevent bicyclists from gaining easy access to the top of the groin. These two security structures are shown in attached Figures 9 and 10. Chevron will assume liability for construction and maintenance of the groin, and will provide t.e County and/or State with documentation releasing them from any such liability. # 9. Parking and Other Beach Services It was suggested that the State Land Commission's assessment of "no effect" on selected beach services was inaccurate. Although it may be somewhat understated, a significant impact on maintenance and lifeguard services seems unlikely. El Segundo beach is not a particularly important recreational resource to either regional or local areas. The beach is located next to an industrialized area, and adjacent to more desirable beaches on the north and south (Dockweiler and Manhattan Beach State Parks). For these reasons, attendance at this beach is relatively low. Nevertheless, the benefits to the public that will result from a slightly-enlarged beach would appear to warrant whatever small increase in beach services may be required as a result. As mentioned in No. 8, above, regarding liability and maintenance of the groin, Chevron is proposing this project to protect its own private property. Any positive impact on local recreational resources (with possible consequent increased need for recreational services) is a side-benefit only. (Chevron has acknowledged their error on page 56 of the Initial Study regarding the presence of 130 spaces, not 30 spaces, in the one public parking lot at the north edge of the beach.) # 10. Benthic Organisms The question has been raised of the impact of the proposed prooject on the benthic (bottom-dwelling) marine organisms due to the foot-print of the groin, the dredging of sand, and the placement of the dredged sand. As mentioned in the "Initial Study", Chevron retained Marine Biological Consultants (MBC) to conduct a field survey in Fall 1982 to examine this issue. MBC obtained sand samples from the prject site at El Segundo beach and also from a "reference" beach where a similar groin and beachfill were installed in 1970. The reference beach was the Redondo Beach area near the 700 ft long Topaz Street groin. Samples were taken at both beaches between elevations of +10 ft and -20 ft MLLW. These sand samples were analyzed in MBC's laboratory for the presence of benthic organisms. MBC concluded that their comparison of the two beaches indicated no likely impact by the proposed project on benthic organisms, as the following excerpt from their report indicates: | CALCADA 3 MAGE | 110 | |----------------|------| | SCAP STUMIM | 1172 | "Infaunal density, species richness, and biomass will probably increase per unit area in both the intertidal and subtidal portions of the project area. These increases are not expected to be statistically significant because of the high variability of the present community. The unit area increases will partially offset the effect of soft bottom habitat loss. The net productivity loss will represent a very small incremental reduction in that of sandy nearshore bottoms in Santa Monica Bay. On a Bay-wide basis the reduction will be indistinguishable from normal year to year variation, which is two orders of magnitude greater. Short-term effects related to passage of storms will have a greater impact on the community throughout the nearshore zone than will the project. The effects of swell from a hurricane off Baja California, were observed during the study. Its impact on even the least exposed portion of the project area (15 to 20 ft below mean lewer low water) was greater than is projected for beach replenishment. The Pismo clam does not currently have an adult population of any size off the El Segundo site. Juveniles recruited during the last three to four years exist in the breaker zone. These will probably be smothered by burial during beach replenishment, but the new beach should prove equally acceptable as a sottlement site for new recruits of future year classes. In the short term, declines will occur throughout the nearshore vertical range affected by groin construction. The long-term effect, based on comparison with a stabilized 12-year old groin, is expected to be increased density, richness, and standing crop of the benthos on a unit area basis." (MEC, Dec. 9, 1982*) ^{* &}quot;Reassessment of Groin of Groin Employment and Beach Replenishment Impact on the Marine Biota near the Chevron U.S.A. Refinery, El Segundo, California, Based on Site-Specific Data", prepared by MBC for Chevron U.S.A., El Segundo, California, December 9, 1982. # ATTACHMENTS TO 'MITIGATION" TABLE 1 - ESMT Protection Project: Design Alternatives FIGURE 1 - Field Sampling Program Vibracore Locations FIGURE 2 - Beach Profile Monitoring Points FIGURE 3 - Beach Profile 1 Grain Size Envelope FIGURE 4 - Beach Profile 2 Grain Size Envelope FIGURE 5 - Composite Cumulative Grain Size Curve for Vibracores VC 1-4 and VC 12-23 FIGURE 6 - Beach Profile 1 Grain Size Envelope and Composite Cumulative Curve FIGURE 7 - Beach Profile 2 Grain Size Envelope and Composite Cumulative Curve FIGURE 8 - Estimated Ocean Bottom Depths: A Comparison FIGURE 9 - Chain-Line Fence to be Located Approximately 50 ft. Offshere of North Side of Groin. FIGURE 10- Location of Chain-link Fence and Guard Rails APPENDIX- Letter of February 10, 1983 from Dr. Bernard W. Pipkin, Ph.D., to Mr. Charles I. Rauw, Dames and Moore, regarding the performance of the Topaz Street Groin, Redondo Beach, as a prototype for the proposed Chevron Groin, El Segundo, California. (From "Initial Study"; amended May 23, 1283) | _ | Viterrutive | Constant 1
Dollars | Present
Worth ²
Dollars | . Pros | Cons | |----|---|---|---|---|--| | 1 | . • One = 900 ft groin
• 500,000 yd ³ beach fd! | 2,400 M
3,200 M
\$ 5,600 M | 1 000 ti | 30) plus maintenance-free life. Gives total protection for marine terminal and submarine pipe-lines. Proven engineering design. Project economies desirable over alternative #2 past 20th year. Will protect, bike path (if reconstra ted) and widen beach. | COIIS | | 2. | Sand Hourishment Program: • 500,000 yd ³ beach fill in year zero • 150,000 yd ³ beach fill every 4 yrs. | 3,400 M
6,800 M
\$ 10,200 M | 3,400 M
2,600 M
\$ 6,000 M | Project economically attractive over alternative I up to 20th year. Will protect bike path (if reconstructed) and widen beach. | Erosion problem is not solved. Comment
to sand nourishment to protect pipeline.
Destroys benthos population everytime
beach is nourished. Potential long term
sand supply problem. | | 3. | •Two = 750 ft groins
• 350,006 ye ³ bench fill
• Additional Beach fill in ensuing yes | 3,200 M ⁴ 2,300 M 2,500 M \$ 8,000 M | 3,200 M
2,300 M
1,000 M
4 6,500 M | Will protect bike path (if reconstructed) and widen beach. | Toe of groin inside littoral drift vone. Lines will start exposure in four years. Commits to sand nourishment to protect pipelines. Destroys benthic population every time beach is nourished. Potential long terms and supply problem, | | 4. | - One - 750 () groin
- 350,650 y-t ³ benct fill
- Additional beach fill in ensuing yes | 1,500 M
2,300 M
3,200 M
\$ 7,000 M | 1,500 M
2,300 M
1,300 M
5 5,100 M | Repnomically attractive over alternative #1 in "present worth dollars". Will protect bike path (if reconstructed) and widen bench. | The of groin inside littoral drift zone. Commits to sand nourishment program to protect pipelines. Destroys benthic population every time beach is neurished. Potential long-term sand supply problem. | | 3. | One - 759 (1 groin - 530,900 yd3 beach fill - lower 3 perth lines - Additional beach fill in ensuing yrs3 MI cost figures are first quarter 1983. Present with
based on a percent infletio f alternatives with periodic future nourismented estimate. Table 1 in "Initial Starrer in "Initial Starrer in "Initial Starrer in "Initial Stady". Correct estimate | والمراب المراجع المراجع المراجع | 1,509 M
2,300 M
2,800 M
1,300 M
5 7,900 M
crest rate. Presenternatives represented to beach fill | nt worth estimates provided to allow companison | Toe of groin inside littoral drift zone Marine terminal operation interference during lowering of lines. Commits to said nourishment to protect pipelines. Destroys benthic population every time beach is nourished. Potential long term said supply problem. | · 1200 (From "Initial Study"; amended May 23, 1983) | | initial blody', amended 4xy 23, 1983) | | | | | |-------|---|------------------------------------|-----------------------------|---|---| | | Alternative | Constant
Dollars | Present
Worth
Dollars | Pros . | Cons | | ů. | · Surfing Reef:
· One reef - 500' by 250'
· 1,000,000 yd ³ beach fill | 3,200 M
5,000 M
\$ 8,200 M | \$ 8,200 M | 30) year maintenance-free life. Gives total protection for marine terminal and sub-lines. Will benefit surving, protect bike path (if reconstructed) and widen beach. | Not a proven augmeering design. | | 7. | Underwater Reef Station: • 2 reefs - 759 ft and 500 ft long, ca. • 1,000,000 yd3 beach fill | 3,500 M
5,000 M
\$ 8,500 M | \$ 3,500 M | 30+ year maintenance-free life. Gives total protection for marine terminal and sub-lines. Will benefit surfing, protect bike path (if reconstructed) and widen beach. | n confined the design | | 8. | Rock Senwall - 1,930 ft Hylon concrete filled bags | 3,000 M
2,600 M
\$ 5,600 M | \$ 5,600 M | Will protect bike path (if reconstructed) and totally protect marine terminal. | Erosion problem is not solved, resulting in narrower bench and potentially no bench. 20 year maintenance free life. Rupair costs to bring project life to 30 years are not included. Installation of nylor bags may be infeasible. | | 9. | Rock Serwall - 1,980 ft Lower marme terminal lines 15 feet - total ten | 2,000 M
11,000 M
\$ 13,000 M | F13,000 h1 | Will protect bike path (if reconstructed) and totally protect marine terminal. | Erosion problem is not solved, resulting in narrower beach and potentially no beach. 20 year maintenance free life. Pipeline repair costs to bring project life to 30 years are not included. Loss of marine terminal operations during constructin period. | | 10. 1 | No Action | | | | Erosion problem is not solved, resulting in narrower beach and potentially no beach. Projected damange to bake path and merion | and marine terminal facilities. Environmental hazard to unprotected pipelines. Public and sgency reaction to exposed sub-lines. High risk. FIGURE 3 # BEACH PROFILE 1 GRAIN SIZE ENVELOPE FIGURE 4 BEACH PROFILE 2 GRAIN SIZE ENVELOPE From "Sediment Compatibility Analysis", by Bares & Moore, P. 3 om "Sediment Compatibility alysis", by Dames & ore, 1983 FIGURE 5 COMPOSITE CUMULATIVE GRAIN SIZE CURVE FOR TURBLED FER THAT CHED VO 12-23 BEACH PROFILE 1 GRAIN SIZE ENVELOPE AND COMPOSITE CUMULATIVE CURVE om "Sediment Compatibility alysis", by Dames & Moore, 83. FIGURE 7 BEACH PROFILE 2 GRAIN SIZE ENVELOPE AND COMPOSITE CUMULATIVE CURVE From "Sediment Compatibility Analysis", FIGURE 9 CHAIN-LINK FENCE TO BE LOCATED APPROX. 50 FT. OFFSHORE OF NORTH SIDE OF ROCK GROIN APPENDIX TO "MITIGATION" BERNARD W. PIPKIN, PH.D. 1625 GRANVIA ALTANISA PALOS VERCEN ESTATES, CA. 90274 CONSULTING GEOLOGIST PMONE - BUS. 378-3696 RES. 378-7864 February 10, 1983 Mr. Charles I. Rauw Senior Coastal Engineer Dames and Moore 1100 Glendon Avenue, Suite 1000 Los Angeles, CA 90024 Re: Performance of the Topaz Street Groin, Redondo Beach, as a prototype for the proposed Chevron groin, El Segundo California Dear Mr. Rauw, At the request of Dames and Moore I am submitting evidence and opinion on the efficacy of the Topaz Street groin in Redondo Beach relative to the proposed groin construction at El Segundo. I am a professor of Geological Sciences at the University of Southern California, a licensed engineering geologist in the State of California, and much of my professional and academic experience lies in the realm of coastal engineering. I followed the Redondo Beach restoration project from its inception and was involved in beach-crosion research for the State of California, Department of Water Resources, at the time beach fill was placed and the groin was constructed (Pipkin, 1967). In addition, I have had several students perform independent research projects under my direction at this location, the results of which I will submit as evidence of groin efficiency. In 1954 the congress passed Public Law 780 authorizing placement of fill along an 8,000 foot stretch of beach from the Redondo Beach pier to Malaga Cove. The project was funded in 1967 and placement of 1.4 million cubic yards of dredge beach material was completed in October, 1968. This part of Redondo Beach has long been regarded as a "node" at the end of the Santa Monica littoral call, that is, on the long term littoral drift simply oscillates within this I-mile stretch of beach. It soon became apparent after fill placement that northward drift from southerly swell was carrying beach material toward the Redondo Beach pier and the Redondo Submarine Canyon where it would be lost forever from the system. The Corps of Engineers decided to place a groin at the north end of this stretch of beach to stop littoral drift before it reached the "wave shadow" of King Harbor and the pier. The groin was built in 1970 and specification provided for a length of about 700 feet, a top elevation of +12' M.L.L.W., and a top width of 8-12 fert. Side slope of the trunk is 1.5:1 and the slope at the head of the sti scure is 2:1. The toe depth of the filter blanket is 22 feet, and the 125 core stone is at 20 feet M.L.L.W. The filter blanket and core stone were dumped and a double layer of armor stone ranging from 22 tons to 6 tons was placed by a crane on the core wedge of sand accumulated on the south side of the groin clearly indicating a blockage of sand movement toward the north. Repeated survey by the Corps of Engineers, Los Angeles District, indicated that sand no longer moved into the wave shedow of the King Harbor Breakwater and pier area. It was of interest whether the structure would block the south moving littoral current and thus cause accretion on the north side of the groin and scour of the beach on the south side, especially during winter swell conditions. In addition, it was of interest to know if the groin was permeable and whether sand actually passed through the structure. In late 1978, 200 pounds of fluorescene-dyed sand was injected on the south side of the Topaz Street groin and two sampling transects were established north of the groin (Sutton, 1979). The sand was taken from Doheny Beach and the fluorescene dye was fixed to it with epoxy resin, in a method described by Ingle (1966). Sampling was done with 3" x 5" greased cards pressed on to the sand surface at predetermined intervals. Injection was on November 5, 1978, and sampling was performed on November 12th, 26th, and December 3, 1978. A large number of dyed grains appeared on the north side of the groin on the first sampling indicating a rather rapid movement of sand toward the north. In addition, dyed grains were deplated on the south side but reappeared again December 3rd indicating a rather rapid reversal of flow. It is the opinion of the undersigned that once sand builds up to an equilibrium profile around the groin it tends to flow rather easily through the interstices of the larger rock or around the head in deeper water. Another study (Vaughan, 1976) used grain parameters and statistical measures to contrast the beach material north and south of the groin. According to Vaughan "...the Topax street groin has served to: (1) dissipate wave energy at the shore, (2) intercept the longshore transport of sand, and (3) keep recently added sand in place to the south of the structure." On a personal note, the undersigned has kept a desultory watch on the project because of an interest in beach cyclas. About 20 acres of new recreational land was created by the fill and it has been maintained over the past decade by the influence of the Topax Street groin. The proposed structure at EL Segundo is very similar to the Topaz Street groin with the exception of the Icoation of fill placement. The EL Segundo structure is 900 feet long compared to 700 feet for Topaz Street; toe depth in both cases is about 20 feet; and design wave height in both cases is very conservative. The difference is that the half-million yards of fill to be placed north of the El Segundo groin will provide an instant stockpile of sand for beaches to the south. Once the fill reaches equilibrium with the dominant wave period and direction, sand should bypass the end of the groin and filter through it to nourish downcoast beaches. There is abundant literature to support this contention and I have taken the liberty to append a bibliography of field and Isborstory research on the subject. It is the opinion of the undersigned that the proposed structure in combination with beach fill will provide the nacessary shoreline protection for the proposed engineering works and will not deprive downdrift beaches of sand nourishment. The structure should perform very such like the Topes Street
groin at Redondo beach that has been one of the more successful 126 - 1188 attached structures built by the Corps of Engineers (Clancy, U.S.C.E., personal communication). It is also the opinion of the undersigned that periodic replacement of fill will be required, probably at about 10-year intervals (based upon a drift rate of 50,000 cubic yards/year). Should you have any questions please call upon me. Very truly yours Benul Whoppen Bernard W. Pipkin Engineering Geologist 159 State of California BWP/mdl # REFERENCES CITED - Ingle, James, 1966, The movement of beach sand; Elsevier Pub. Co., New York, 221 p. - Pipkin, B.W., and others, 1967, Progress report on study of beach nourishment along the southern California coastline; State Calif., Dept. Water Resources, Southern District, 59 p. - Sutton, S.W., 1979, Tracer study at Topaz Beach; unpublished Senior Thesis, University of Southern California, Dept. of Geology. - Vaughan, Jesse, 1976, Analysis of swash zone sands from Topaz street groin area, Redondo Beach, California; The Compass, v. 54, p. 4-8. # SELECTED' REFERENCES - Balsillie, J.H., and Berg, D.W., 1972, State of groin design and effectiveness; Proc. 13th Coastal Engineering Conf., Vancouver, B.C., reprinted by Amer. Soc. Civil Engineers. An excellent annotated bibliography on the performance of groins relative to height, length, spacing, orientation, and permeability. - Balsillie, J.H., and Bruno, R.O., 1972, Groins: An annotated bibliography; U.S. Corps Engineers, C.E.R.C., M.P. 1-72. A well indexed and comprehensive coverage of laboratory and field investigations on groins world wide. - Berg, Dennis W., and Wattz, G.M., 1967, Variations in groin design; Proceedings Amer. Soc. Civil Engineers, v. 93, p. 79-100. A compendium of groin types that have been constructed on U.S. Shorelines and waterways. - Price, W.A., and Tomlinson, K.W., 1968, The effect of groynes on stable basches beaches; Proc. 11th Conf. on Coastal Engineering, A.S.C.K., v. 1, p. 518-525. Vave basin tests showed that permeable groins had little effect inshore or offshore whereas impermeable groins produced buildup of sand offshore from groin. - Sollitt, C.K. and Cross, R.H., 1976, Wave reflection and transmission at permeable breakwaters; Coastal Engin. Research Center Tech. Paper 76-8, 172 p. Main point is that much long (storm) period wave energy is passed through permeable rock structures, that is, as much as 30% of storm wave energy passes through rock breakwaters (and deeper parts of rock groins). SANTA MONICA MIL HOMING S WHITTIER ไหต่ ยหาไอ่ 263 WATES KIUOZ IIAA Ş LEXMOX DOWNEY ~ LYHWOOD WILLOWBROOK LAWHOALE ... CÖMPTON เมเบองรั้ง HONE MYTTHEM HERMOSA BEACH يتعزق: TORRANCE LAKEWOOD , REDONDO BEACH PALOS VEROES ESTATE Palos Verdes Pt Lauda Ray & Resort Pt ELICHO PALOS VEROYS LONG" Long Bosen BEACH PEORO Harbur HUNTINGTON BEACH **MFWI** EXHIBIT "B" WP 5574 Blue Cavein In MISLANDS No 12 7-38